179 research outputs found

    The Conformal Bootstrap: Theory, Numerical Techniques, and Applications

    Full text link
    Conformal field theories have been long known to describe the fascinating universal physics of scale invariant critical points. They describe continuous phase transitions in fluids, magnets, and numerous other materials, while at the same time sit at the heart of our modern understanding of quantum field theory. For decades it has been a dream to study these intricate strongly coupled theories nonperturbatively using symmetries and other consistency conditions. This idea, called the conformal bootstrap, saw some successes in two dimensions but it is only in the last ten years that it has been fully realized in three, four, and other dimensions of interest. This renaissance has been possible both due to significant analytical progress in understanding how to set up the bootstrap equations and the development of numerical techniques for finding or constraining their solutions. These developments have led to a number of groundbreaking results, including world record determinations of critical exponents and correlation function coefficients in the Ising and O(N)O(N) models in three dimensions. This article will review these exciting developments for newcomers to the bootstrap, giving an introduction to conformal field theories and the theory of conformal blocks, describing numerical techniques for the bootstrap based on convex optimization, and summarizing in detail their applications to fixed points in three and four dimensions with no or minimal supersymmetry.Comment: 81 pages, double column, 58 figures; v3: updated references, minor typos correcte

    Bounds in 4D Conformal Field Theories with Global Symmetry

    Full text link
    We explore the constraining power of OPE associativity in 4D Conformal Field Theory with a continuous global symmetry group. We give a general analysis of crossing symmetry constraints in the 4-point function , where Phi is a primary scalar operator in a given representation R. These constraints take the form of 'vectorial sum rules' for conformal blocks of operators whose representations appear in R x R and R x Rbar. The coefficients in these sum rules are related to the Fierz transformation matrices for the R x R x Rbar x Rbar invariant tensors. We show that the number of equations is always equal to the number of symmetry channels to be constrained. We also analyze in detail two cases - the fundamental of SO(N) and the fundamental of SU(N). We derive the vectorial sum rules explicitly, and use them to study the dimension of the lowest singlet scalar in the Phi x Phi* OPE. We prove the existence of an upper bound on the dimension of this scalar. The bound depends on the conformal dimension of Phi and approaches 2 in the limit dim(Phi)-->1. For several small groups, we compute the behavior of the bound at dim(Phi)>1. We discuss implications of our bound for the Conformal Technicolor scenario of electroweak symmetry breaking.Comment: 30 page

    Improved bounds for CFT's with global symmetries

    Full text link
    The four point function of Conformal Field Theories (CFT's) with global symmetry gives rise to multiple crossing symmetry constraints. We explicitly study the correlator of four scalar operators transforming in the fundamental representation of a global SO(N) and the correlator of chiral and anti-chiral superfields in a superconformal field theory. In both cases the constraints take the form of a triple sum rule, whose feasibility can be translated into restrictions on the CFT spectrum and interactions. In the case of SO(N) global symmetry we derive bounds for the first scalar singlet operator entering the Operator Product Expansion (OPE) of two fundamental representations for different value of N. Bounds for the first scalar traceless-symmetric representation of the global symmetry are computed as well. Results for superconformal field theories improve previous investigations due to the use of the full set of constraints. Our analysis only assumes unitarity of the CFT, crossing symmetry of the four point function and existence of an OPE for scalars.Comment: 24 pages, 6 figure

    The ABC (in any D) of Logarithmic CFT

    Full text link
    Logarithmic conformal field theories have a vast range of applications, from critical percolation to systems with quenched disorder. In this paper we thoroughly examine the structure of these theories based on their symmetry properties. Our analysis is model-independent and holds for any spacetime dimension. Our results include a determination of the general form of correlation functions and conformal block decompositions, clearing the path for future bootstrap applications. Several examples are discussed in detail, including logarithmic generalized free fields, holographic models, self-avoiding random walks and critical percolation.Comment: 55 pages + appendice

    Carving Out the Space of 4D CFTs

    Get PDF
    We introduce a new numerical algorithm based on semidefinite programming to efficiently compute bounds on operator dimensions, central charges, and OPE coefficients in 4D conformal and N=1 superconformal field theories. Using our algorithm, we dramatically improve previous bounds on a number of CFT quantities, particularly for theories with global symmetries. In the case of SO(4) or SU(2) symmetry, our bounds severely constrain models of conformal technicolor. In N=1 superconformal theories, we place strong bounds on dim(Phi*Phi), where Phi is a chiral operator. These bounds asymptote to the line dim(Phi*Phi) <= 2 dim(Phi) near dim(Phi) ~ 1, forbidding positive anomalous dimensions in this region. We also place novel upper and lower bounds on OPE coefficients of protected operators in the Phi x Phi OPE. Finally, we find examples of lower bounds on central charges and flavor current two-point functions that scale with the size of global symmetry representations. In the case of N=1 theories with an SU(N) flavor symmetry, our bounds on current two-point functions lie within an O(1) factor of the values realized in supersymmetric QCD in the conformal window.Comment: 60 pages, 22 figure

    Monojet versus rest of the world I: t-channel Models

    Get PDF
    Monojet searches using Effective Field Theory (EFT) operators are usually interpreted as a robust and model independent constraint on direct detection (DD) scattering cross-sections. At the same time, a mediator particle must be present to produce the dark matter (DM) at the LHC. This mediator particle may be produced on shell, so that direct searches for the mediating particle can constrain the effective operator being applied to monojet constraints. In this first paper, we do a case study on t-channel models in monojet searches, where the (Standard Model singlet) DM is pair produced via a t-channel mediating particle, whose supersymmetric analogue is the squark. We compare monojet constraints to direct constraints on single or pair production of the mediator from multi-jets plus missing energy searches and we identify the regions where the latter dominate over the former. We show that computing bounds using supersymmetric simplified models and in the narrow width approximation, as done in previous work in the literature, misses important quantitative effects. We perform a full event simulation and statistical analysis, and we compute the effects of both on- and off-shell production of the mediating particle, showing that for both the monojet and multi-jets plus missing energy searches, previously derived bounds provided more conservative bounds than what can be extracted by including all relevant processes in the simulation. Monojets and searches for supersymmetry (SUSY) provide comparable bounds on a wide range of the parameter space, with SUSY searches usually providing stronger bounds, except in the regions where the DM particle and the mediator are very mass degenerate. The EFT approximation rarely is able to reproduce the actual limits. In a second paper to follow, we consider the case of s-channel mediators.Comment: 22 pages + appendices, 10 figure

    Central Charge Bounds in 4D Conformal Field Theory

    Full text link
    We derive model-independent lower bounds on the stress tensor central charge C_T in terms of the operator content of a 4-dimensional Conformal Field Theory. More precisely, C_T is bounded from below by a universal function of the dimensions of the lowest and second-lowest scalars present in the CFT. The method uses the crossing symmetry constraint of the 4-point function, analyzed by means of the conformal block decomposition.Comment: 16 pages, 6 figure

    Bootstrapping the O(N) Archipelago

    Get PDF
    We study 3d CFTs with an O(N)O(N) global symmetry using the conformal bootstrap for a system of mixed correlators. Specifically, we consider all nonvanishing scalar four-point functions containing the lowest dimension O(N)O(N) vector ϕi\phi_i and the lowest dimension O(N)O(N) singlet ss, assumed to be the only relevant operators in their symmetry representations. The constraints of crossing symmetry and unitarity for these four-point functions force the scaling dimensions (Δϕ,Δs)(\Delta_\phi, \Delta_s) to lie inside small islands. We also make rigorous determinations of current two-point functions in the O(2)O(2) and O(3)O(3) models, with applications to transport in condensed matter systems.Comment: 32 pages, 13 figures; updated Fig.2, added references and minor corrections in Sec.3.
    • 

    corecore